

SECTION A
(Answer **ALL** questions)

Direction: For each question, there are four alternatives: A, B, C and D. Choose the correct alternative and circle it. Do not circle more than **ONE** alternative. If there are more than one choice circled, **NO** score will be awarded.

Question 1

[2×15 = 30]

i) In how many ways can the letters of the word “COMBINE” be arranged?

- A 720
- B 900
- C 5040
- D 6080

ii) Chimi picked up two numbers from a box and added them to a total of 24. What could be the two numbers that she picked, if their product was as large as possible?

- A (10, 14)
- B (9, 15)
- C (13, 11)
- D (12, 12)

iii) If the total cost function of a firm is given by $C(x) = 3x^2 - 6x + 5$, then its average cost function would be

- A $3x - 6 + \frac{5}{x}$.
- B $-3x + 6 + \frac{5}{x}$.
- C $3x - 6 - \frac{5}{x}$.
- D $-3x + 6 - \frac{5}{x}$.

iv) There are two lines z_1 and z_2 . The direction cosines of the line z_1 are $\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}$ and the direction cosines of the line z_2 are $\frac{\sqrt{3}}{4}, x, \frac{-\sqrt{3}}{2}$. The angle between the two lines is 120° . Find the value of x .

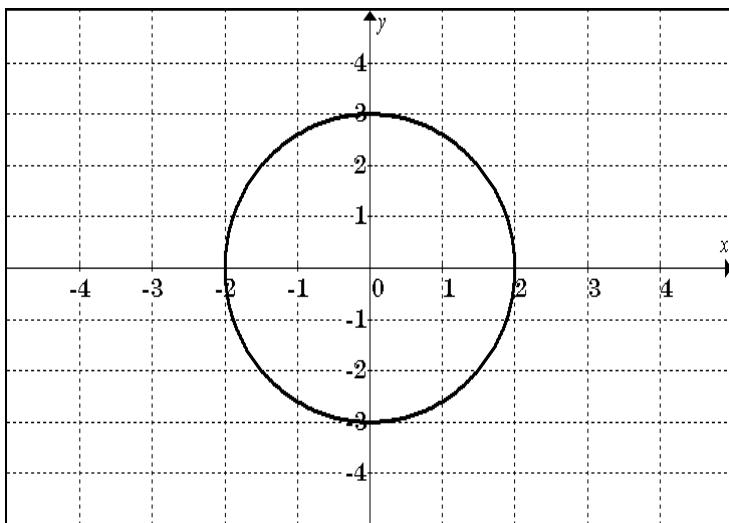
A $-\frac{1}{4}$

B $-\frac{1}{2}$

C $\frac{1}{4}$

D $\frac{1}{2}$

v) A bag contains 2 white marbles, 4 blue marbles and 6 red marbles. A marble is drawn at random from the bag. What is the probability that it is NOT a blue marble?


A $\frac{1}{6}$

B $\frac{1}{6}$

C $\frac{1}{2}$

D $\frac{2}{3}$

vi) The figure given below represents a vertical ellipse.

Which of the following is the equation for the above figure?

A $\frac{x^2}{4} - \frac{y^2}{9} = 1$

B $\frac{x^2}{9} - \frac{y^2}{4} = 1$

C $\frac{x^2}{4} + \frac{y^2}{9} = 1$

D $\frac{x^2}{9} + \frac{y^2}{4} = 1$

vii) $\int \frac{\cos 5x}{2} dx$ is equal to

A $-\frac{\sin 5x}{10} + C.$

B $\frac{\sin 5x}{10} + C.$

C $\frac{\sin 5x}{2} + C.$

D $-\frac{\sin 5x}{2} + C.$

viii) Passang decides to deposit a certain amount of money at the end of each year in a bank which pays 3 % p.a. as compound interest. If his accumulation at the end of 15 years is Nu 55,800, what is his yearly deposit?

- A Nu 3000
- B Nu 2913
- C Nu 2500
- D Nu 1925

ix) What is the value of x in the determinant
$$\begin{vmatrix} 0 & 2 & x \\ -1 & 8 & 3 \\ 0 & 5 & 1 \end{vmatrix} = 7?$$

- A $-\frac{9}{5}$
- B -1
- C 1
- D $\frac{9}{5}$

x) The number of students in Class X A and X B are 30 and 35 respectively. The mean scores of students in a Mathematics test are as follows:

X A	X B	X A and X B
70	?	62

Find the mean score of students of Class X B.

- A 24.31
- B 34.21
- C 55.14
- D 65.21

xi) If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$, then the value of AB' is

A $\begin{bmatrix} 8 & 5 \\ 7 & 5 \end{bmatrix}$.

B $\begin{bmatrix} 8 & -5 \\ -7 & 5 \end{bmatrix}$.

C $\begin{bmatrix} 4 & 7 \\ 1 & 3 \end{bmatrix}$.

D $\begin{bmatrix} -4 & 7 \\ 1 & -3 \end{bmatrix}$.

xii) Tashi Commercial Corporation sells varieties of products to its customers. In general, the total revenue it receives from selling x units of a product is given by $R(x) = 20x - 0.5x^2$. What is the marginal revenue generated from selling 10 units of the product?

A 10

B 15

C 20

D 25

xiii) The derivative of the function $y = \sin^2(x^2)$ is

A $4x \sin(x^2)$.

B $2x \cos^2(x^2)$.

C $\cos^2(x^2)$.

D $2x \sin(2x^2)$.

xiv) Following are the ranks obtained by 6 students in two subjects, Statistics and Mathematics:

Statistics (x)	1	2	3	4	5	6
Mathematics (y)	2	4	1	5	3	9

In the above table, the Statistics and Mathematics marks have

- A low degree negative correlation.
- B high degree negative correlation.
- C low degree positive correlation.
- D moderate degree positive correlation.

xv) If $y = x^x$, then $\frac{dy}{dx}$ is

- A $2x$.
- B $x \cdot x^{x-1}$.
- C $x^x(1 + \log x)$.
- D $x^x(1 - \log x)$.

SECTION B – [10 × 7 = 70 marks]

Answer any 10 questions. All questions in this section have equal marks.

Question 2

a) Calculate the semi inter-quartile range from the following distribution. [3]

Age in years	20	30	40	50	60	70	80
No.of persons	3	61	132	153	140	51	3

b) Find $\frac{dy}{dx}$ for the following functions. [4]

i) $y = x \log x - x$

ii) $x^3 + 8xy + y^3 = 64$

Question 3

a) For the parabola $y^2 = 18x$, find the coordinates of the focus, length of latus rectum and the equation of the directrix. [3]

b) A committee of 3 members is to be selected from amongst 5 boys and 6 girls.

In how many ways can this be done so as to include at least 1 boy?

[4]

Question 4

a) The total revenue received from the sale of x units of a product is given by

$$R(x) = 20x + 5x^2 - 3x^3. \text{ Find}$$

[3]

- i. the average revenue,
- ii. the marginal revenue and
- iii. actual revenue from selling 10 units.

b) Compute $\int \frac{3x-2}{(x+1)^2(x+3)} dx$. [4]

Question 5

a) Using the properties of determinants, show that

[4]

$$\begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix} = xyz(x-y)(y-z)(z-x).$$

b) Nine counters numbered 2 to 10 are put in a bag. One counter is selected at random.
What is the probability of getting a counter with [3]

- i) an odd number,
- ii) a multiple of 3 and
- iii) a number 5?

Question 6

a) For $A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 1 & -3 \\ 1 & 0 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 0 & 5 \\ 6 & 9 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 4 & 4 \\ 5 & -1 & 4 \\ 7 & 8 & -1 \end{bmatrix}$, [3]

Compute:

i. $3A - 6B + 9C$

ii. $7A - 2B - C$

b) The correlation coefficient between the variables x and y is $r = 0.60$. If $\sigma_x = 1.50$, $\sigma_y = 2.00$, $\bar{X} = 10$, $\bar{Y} = 20$, find the regression equations of y on x and x on y .

[4]

Question 7

a) Dorji set up a poultry farm in his village. He borrowed Nu 100,000 from Bhutan Development Bank Ltd. on a condition to repay it with compound interest at 5 % p.a. at the annual installments of Nu 10,000 each. In how many years will his debt be liquidated?

[4]

b) Determine the value of $\int (x \log x) dx$. [3]

Question 8

a) The given equation $4x^2 - 9y^2 - 8x - 32 = 0$ represents the equation of a conic.
Find its eccentricity and coordinates of the foci.

[4]

b) How many numbers of 4 digits can be formed with the digits 1, 2, 3, 4 and 5 when

- the digit is repeated?
- the digit is not repeated?

[3]

Question 9

a) To save for a child's education, a family decides to invest Nu 3000 at the end of each six month period in a millennium scheme paying 8 % p.a. compounded annually. Find the amount of investment at the end of 18 years. [3]

b) Calculate the Karl Pearson's coefficient of correlation between the ages of husband and wife and interpret the result.

[4]

Age of husband (x)	35	34	40	43	56	20	38
Age of wife (y)	32	30	31	32	53	20	33

Question 10

a) A function is defined by $f(x) = x^3 - 3x^2 - 9x + 7$. Determine its maximum and minimum values.

[4]

b) A company sells its product at the rate of Nu 6 per unit. The variable costs are estimated to run 25 % of the total revenue received. If the fixed costs for the product is Nu 4500, find

[3]

- i. the total cost function,
- ii. the profit function and
- iii. the break-even point?

Question 11

a) The directrix of an ellipse is $3x + 4y = 1$ and focus is $(-2, 3)$. Find the equation of the ellipse if its eccentricity is $\frac{1}{\sqrt{2}}$.

[3]

b) If $y = x^y$, prove that $x \frac{dy}{dx} = \frac{y^2}{1 - y \log x}$. [4]

Question 12

a) An analysis of daily wages of the workers of two organizations A and B yielded the following results:

	Organization	
	A	B
No. of workers	10	20
Average daily wages	Nu. 30	Nu. 15
Variance	25	100

Obtain the average daily wages. Which organization is more equitable with regard to wages? [4]

b) Integrate: $\int (3x^2 + 4x + 5)^5 (3x + 2) dx.$ [3]

Question 13

a) A manufacturer can sell x items at a price of Nu($250 - x$) each. The cost of producing x items is Nu($2x^2 - 50x + 12$). [4]

- i. Determine the number of items to be sold so that the manufacturer can make maximum profit.
- ii. Find the maximum profit.

iii. Evaluate: $\int \frac{x^3 + 3x^2 + 2x + 1}{x-1} dx$. [3]

Question 14

a) Show that the triangle with vertices $A(6, 10, 10)$, $B(1, 0, -5)$ and $C(6, -10, 0)$ is a right angled triangle. [3]

b) Solve the following system of equations using Cramer's rule. [4]

$$-4x + 2y - 9z = 2$$

$$3x + 4y + z = 5$$

$$x - 3y + 2z = 8$$

FORMULAE

CO-ORDINATE GEOMETRY

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$(x, y, z) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}, \frac{m_1 z_2 + m_2 z_1}{m_1 + m_2} \right)$$

$$a_1x + b_1y + c_1z = 0 \text{ and } a_2x + b_2y + c_2z = 0$$

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{z}{a_1b_2 - a_2b_1}$$

$$\cos \theta = \pm \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

ALGEBRA

$$a^2 - b^2 = (a+b)(a-b)$$

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$\text{In the quadratic equation } ax^2 + bx + c = 0, x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$${}^n p_r = \frac{n!}{(n-r)!}$$

$${}^n C_r = \frac{n!}{r!(n-r)!}$$

$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$AA^{-1} = A^{-1}A = I$$

$$A^{-1} = \frac{1}{\det A} \cdot adj A$$

$$x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{D_z}{D}$$

COMMERCIAL MATHEMATICS

$$A = \frac{a}{i} (1+i) \left[(1+i)^n - 1 \right]$$

$$P = \frac{a}{i} \left[1 - (1+i)^{-n} \right]$$

$$AC(x) = \frac{C(x)}{x}, MC(x) = \frac{d}{dx}[C(x)]$$

$$C(x) = F + V(x)$$

$$R(x) = xG(x) \dots \text{Output} \times \text{Price}$$

$$P(x) = R(x) - C(x)$$

CALCULUS

$$y = x^n, y' = nx^{n-1},$$

$$\text{If } y = u \pm v, \text{ then } \frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$

$$\text{If } y = uv, \text{ then } \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\text{If } y = \frac{u}{v}, \text{ then } \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\int uv \, dx = u \int v \, dx - \int \left(u \frac{dv}{dx} \right) dx.$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int (ax+b)^n = \frac{(ax+b)^{n+1}}{a(n+1)} + c$$

$$\int a^{nx} dx = \frac{a^{nx}}{n \log_e a} + c$$

DATA AND PROBABILITY

$$\bar{X} = \frac{\sum fx}{\sum f} \quad or \quad \bar{X} = \frac{\sum x}{n}$$

$$Median = L + \frac{i}{f} \left(\frac{N}{2} - c \right)$$

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} \quad or \quad \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n} \right)^2}$$

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2}$$

$$\bar{x}_{12} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$$

$$\sigma_{12} = \sqrt{\frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$

$$Cov(X, Y) = \frac{1}{n} \sum (X - \bar{X}) (Y - \bar{Y})$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{n \sigma_x \sigma_y}$$

$$r = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}, \quad Correction factor = \frac{1}{12} (m^3 - m)$$

$$r = \pm \sqrt{b_{xy} \cdot b_{yx}}$$

$$b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = \frac{n \sum xy - \sum x \sum y}{n \sum y^2 - (\sum y)^2}$$

$$Y - \bar{Y} = \frac{\text{cov}(X, Y)}{\sigma_x^2} (X - \bar{X}) = r \frac{\sigma_y}{\sigma_x} (X - \bar{X})$$

$$X - \bar{X} = \frac{\text{cov}(X, Y)}{\sigma_x^2} (Y - \bar{Y}) = r \frac{\sigma_x}{\sigma_y} (Y - \bar{Y})$$

$$b_{xy} \times b_{yx} = r \frac{\sigma_x}{\sigma_y} \times r \frac{\sigma_y}{\sigma_x}$$

$$\sum y = na + b \sum x$$

$$\sum xy = a \sum x + b \sum x^2$$

$$y - \bar{y} = b_{yx} (x - \bar{x})$$

$$x - \bar{x} = b_{xy} (y - \bar{y})$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) + P(\bar{A}) = 1$$

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Rough work

Rough work