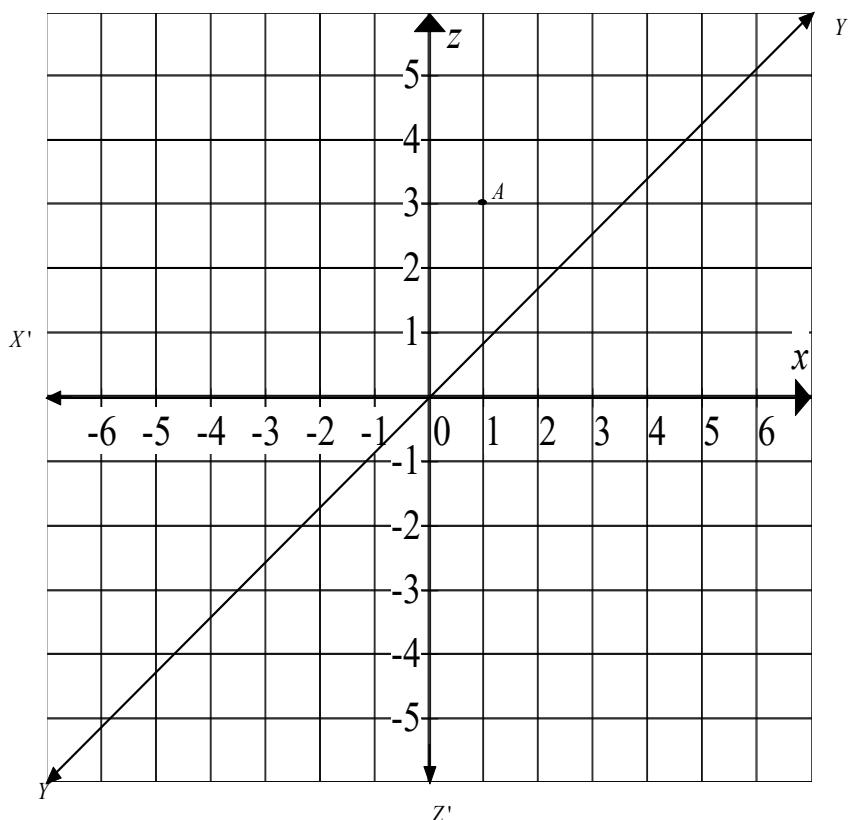


SECTION A [30 MARKS]
ANSWER ALL QUESTIONS

For each question, there are four alternatives: A, B, C and D. Choose the correct alternative and circle it. Do not circle more than ONE alternative. If there are more than one choice circled, NO score will be awarded.

Question 1


[30]

- i. What is the present value of perpetual annuity of Nu 1000 at the interest rate of 5% per annum?
A Nu 200
B Nu 2000
C Nu 20000
D Nu 200000
- ii. What value of 'r' will make the relation ${}^{11}C_{2r} = {}^{11}C_{2+r}$ true, if $2r \neq r+2$?
A 3
B 9
C 10
D 12
- iii. If $\frac{dy}{dx}$ of the function is $2x^2+5$, then the gradient of the function at $(-1,0)$ will be
A - 4.
B 4.
C 5.
D 7.
- iv. Find the probability that the first die shows 6, when two unbiased dice are thrown.
A $\frac{5}{6}$
B $\frac{5}{36}$
C $\frac{1}{6}$
D $\frac{1}{36}$

v. The total revenue received from the sale of 'P' units of oranges is given by $R(P) = 10P + 2P^2 + 100$. Find the revenue on an average by selling 50 units.

- A Nu 112
- B Nu 210
- C Nu 5500
- D Nu 5600

vi. From the diagram below, determine the distance of the point $A(x, 1, 4)$ from the origin.

- A $\sqrt{17}$
- B $\sqrt{20}$
- C $\sqrt{21}$
- D $\sqrt{25}$

vii. If three brothers x, y and z have to always sit together, in how many ways can they arrange themselves so that the younger brother 'x' has to always sit in the middle?

- A 1
- B 2
- C 3
- D 6

viii. Evaluate $\int (2x + 1)^3 \cdot dx$

- A $\frac{(2x+1)^4}{4} + C$
- B $\frac{(2x+1)^4}{8} + C$
- C $(6x + 3)^2 + C$
- D $3(2x + 1)^2 + C$

ix. Find the value of x, if the line through $A(4,1,2)$ and $B(5,x,0)$ is parallel to the line through $C(2,1,1)$ and $D(3,3,-1)$.

- A 1
- B 2
- C 3
- D 4

x. Find the second order derivative of the function $y = (1 - x)(x + 1)$.

- A 0
- B $-2x$
- C +2
- D -2

xi. If the two lines of regression when plotted on a graph coincide with the slope greater than zero, there will be

- I perfect
- II high degree
- III low degree
- IV positive correlation
- V negative correlation

- A I and IV.
- B II and IV.
- C I and V.
- D III and V.

xii. For what value of 'a', the matrix $X = \begin{bmatrix} a & 1 & 3 \\ 2 & 2 & 6 \\ 2 & -3 & 1 \end{bmatrix}$ will be singular?

- A 0
- B 1
- C 2
- D 3

xiii. What amount has Mr. Dawa to deposit in a bank at the end of each year at 5% interest rate, so that his accumulation at the end of 15 years will be Nu 107920?

A Nu 4500
B Nu 5000
C Nu 10000
D Nu 10500

xiv. What is the integral of $\frac{6x}{x^2}$ with respect to x ?

A $\log x + c$
B $\log x^2 + c$
C $6\log x + c$
D $-6x^{-2} + c$

xv. A die is thrown and the outcome is an odd number. What is the probability of getting a prime number?

A 1
B $\frac{1}{2}$
C $\frac{1}{3}$
D $\frac{2}{3}$

SECTION B [70 MARKS]
ATTEMPT ANY 10 QUESTIONS

Question 2

a) The marks obtained by Class XII Students in Business Mathematics and in Economics are as follows: [4]

Marks in Business Mathematics: 35 23 47 17 10 43 9 6 28

Marks in Economics: 30 33 45 23 8 49 12 4 31

Compute their ranks in the two subjects and coefficient of correlation of ranks.

--	--

b) For $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$, find $A^2 - 4A + 7I$.

[3]

Question 3

a) Determine the maximum profit that a company can generate if the profit function [4]
is given by $P(x)=52x - x^2 - 100$.

b) Using determinants, find the area of the triangle with the vertices [3]
A(-3, 5), B(3, -6) and C(7, 2).

Question 4

a) Find the anti-derivative of $\frac{2x-5}{\sqrt{x^2-5x+3}}$ with respect to x. [3]

b) A company wants to launch a new product by investing Nu 35000 as the fixed cost and Nu 500 per unit as the variable cost of production. The revenue function for the sale of x units is given by $5000x - 100x^2$. Find the value of x at the point where there will be no loss or no gain. [4]

Question 5

a) Find the coordinates of point $A(x, y, z)$ in between the points $B(1, 3, 7)$ and $C(6, 3, 2)$ in the ratio 2: 3. [3]

b) Find $\frac{dy}{dx}$ in $4x^2 + y^2 - xy + 2y - 2 = 0$

[4]

Question 6

a) The marks obtained by 5 students in Mathematics and Accountancy tests are [4]
given below.

Mathematics	20	13	18	21	11
Accountancy	17	12	23	25	14

Calculate Karl Pearson's correlation coefficient and interpret the result.

b) In how many ways can a student choose 10 questions out of 13 questions if 5 questions are compulsory? [3]

Question 7

a) Write the system of equation $x+y=5$, $z+y=7$, $z+x=6$ in determinant form and find
i. determinant. [2]

ii. the values of x, y and z. [2]

b) The cost function is given by $3x^2 - 2x + 5$, find the
i. average cost.

[1]

--	--

ii. marginal cost.

[1]

--	--

iii. marginal cost when $x = 4$

[1]

Question 8

a) Mr. Pema and Mrs. Dema appear for an interview for the same post. The probability of selecting Mr. Pema is $\frac{1}{7}$ and that of Mrs. Dema is $\frac{1}{5}$. What is the probability that;

i. both of them will be selected? [1½]

ii. only one of them will be selected?

[1½]

--	--

b) Tobgay buys a mobile phone paying Nu 4000 in cash and promising to pay Nu 200 at the end of every month for the next 4 years. If money is worth 12% p.a, converted monthly, what will be the cash price of the mobile phone? [4]

--	--

Question 9

a) Evaluate $\int \frac{x+7}{(x-2)(x+4)} dx$. [4]

--	--

b) If Nu 1000 is paid at the rate of 8% per annum compounded annually, find the [3]
number of years for the amount to exceed Nu 20000.

--	--

Question 10

a) Verify that $\frac{dy}{dx} = \frac{2}{2y-1}$, if $y = \sqrt{2x + \sqrt{2x + \sqrt{2x + \dots \text{to } \infty}}}$ [3]

b) Express the $|A| = \begin{vmatrix} 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \\ 1 & \gamma & \gamma^2 \end{vmatrix}$ into the factors $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$ using [4]
the properties of determinant.

Question 11

a) Equation of two regression lines are $4x - 5y = -33$ and $20x - 9y = 107$.

From the above equation of lines, find

i. Coefficient b_{yx} and Coefficient b_{xy}

[2]

--	--

ii. the mean value of x and y. [2]

--	--

b) Evaluate $\int (2x^3 + 4)x^2 \cdot dx$ [3]

--	--

Question 12

a) If $f(x) = \frac{\sqrt{x-1} - \sqrt{x+1}}{\sqrt{x-1} + \sqrt{x+1}}$, Find $f'(2)$. [3]

--	--

b) At the beginning of each quarter, Nu 2000 is deposited in the savings account [4]
which pays an interest of 10% p.a compounded quarterly. Find the balance in the
account after 5 years.

--	--

Question 13

a) Find the angle θ between AB and CD for given coordinates: [3]
A(-3,2,4), B(2,5,-2), C(1,-2,2) and D(4,2,3).

b) Integrate the following functions.

i.
$$\int \frac{(x^2-9)}{(x-3)} \cdot dx \quad [2]$$

ii. $\int (x - 1)(x^2 + x + 1) \cdot dx$

[2]

Question 14

a) If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the direction cosines of the line with
 $\cos \alpha = \frac{14}{15}$, $\cos \beta = \frac{1}{3}$. Determine $\cos \gamma$.

[3]

a) Find the inverse of the matrix $A = \begin{bmatrix} 3 & 0 & 2 \\ 1 & 5 & 9 \\ -6 & 4 & 7 \end{bmatrix}$. [4]

MATHEMATICAL FORMULAE

Co-ordinate Geometry

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$(x, y, z) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}, \frac{m_1 z_2 + m_2 z_1}{m_1 + m_2} \right) \quad A = \frac{a}{i} \left[(1+i)^n - 1 \right]$$

$$a_1x + b_1y + c_1z = 0 \text{ and } a_2x + b_2y + c_2z = 0$$

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{z}{a_1b_2 - a_2b_1}$$

$$\cos \theta = \pm \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Commercial Mathematics

$$A = \frac{a}{i} (1+i) \left[(1+i)^n - 1 \right]$$

$$P = \frac{a}{i} \left[1 - (1+i)^{-n} \right]$$

$$P = \frac{a}{i} (1+i) \left[1 - (1+i)^{-n} \right]$$

$$A(x) = \frac{C(x)}{x}, \quad M(x) = \frac{d}{dx}(C(x))$$

$$C(x) = F + V(x)$$

$$R(x) = xG(x)$$

$$P(x) = R(x) - C(x)$$

$$MC = \frac{d}{dx}(C(x))$$

Algebra

$$a^2 - b^2 = (a+b)(a-b)$$

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

In the quadratic equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$${}^n P_r = \frac{n!}{(n-r)!}$$

$${}^n C_r = \frac{n!}{r!(n-r)!}$$

Calculus

$$y = x^n, \quad y' = nx^{n-1},$$

$$\text{If } y = u \pm v, \text{ then } \frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$

$$\text{If } y = uv, \text{ then } \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\text{If } y = \frac{u}{v}, \text{ then } \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$AA^{-1} = A^{-1}A = I$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$A^{-1} = \frac{1}{\det A} \cdot adj A$$

$$\int uv dx = u \int v dx - \int \left(\frac{du}{dx} \int v dx \right) dx.$$

$$x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{Dz}{D}$$

Data and Probability

$$\bar{x} = \frac{\sum fx}{\sum f} \quad or \quad \bar{x} = \frac{\sum x}{n}$$

$$Median = L + \frac{i}{f} \left(\frac{N}{2} - c \right)$$

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} \quad or \quad \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n} \right)^2}$$

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2}$$

$$\overline{X}_{12} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$$

$$\sigma_{12} = \sqrt{\frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$

$$Cov(X, Y) = \frac{1}{n} \sum (X - \bar{X})(Y - \bar{Y})$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{n \sigma_x \sigma_y}$$

$$r = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}, \quad \text{Correction factor} = \frac{1}{12} (m^3 - m)$$

$$r = \pm \sqrt{b_{xy} b_{yx}}$$

$$b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = \frac{n \sum xy - \sum x \sum y}{n \sum y^2 - (\sum y)^2}$$

$$Y - \bar{Y} = \frac{\text{cov}(X, Y)}{\sigma_x^2} (X - \bar{X}) = r \frac{\sigma_y}{\sigma_x} (X - \bar{X})$$

$$X - \bar{X} = \frac{\text{cov}(X, Y)}{\sigma_x^2} (Y - \bar{Y}) = r \frac{\sigma_x}{\sigma_y} (Y - \bar{Y})$$

$$\mathbf{b}_{xy} \times \mathbf{b}_{yx} = r \frac{\sigma_x}{\sigma_y} \times r \frac{\sigma_y}{\sigma_x}$$

$$\sum y = na + b \sum x$$

$$\sum xy = a \sum x + b \sum x^2$$

$$y - \bar{y} = b_{yx} (x - \bar{x})$$

$$x - \bar{x} = b_{xy} (y - \bar{y})$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) + P(\bar{A}) = 1$$

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

ROUGH WORK

ROUGH WORK