

Question 1**[10]**

Determine the percentage purity of potassium manganate (VII) using the solutions provided to you by permanganometry titration.

- a) **C-10** is a solution containing 0.4 g of potassium manganate (VII) per 250 mL.
- b) **C-11** is a solution containing 20.3 g of hydrated ammonium iron (II) sulphate per 500 mL.
- c) **C-12** is a 1.0 M dilute sulphuric acid.

[Relative atomic mass: K=39, Mn = 55, Fe = 56, S = 32, O = 16, N = 14, H = 1]

Based on the above experiment, answer the following questions:

- i. Write the chemical equations for the given redox titration.

--	--

- ii. Identify the oxidizing agent and reducing agent from the equation.

--	--

- iii. Calculate the molarity of C-11 solution using the strength provided in the question. This solution should be used as a stock solution for the preparation of required subsequent solution.

--	--

Read the given procedure carefully and prepare $\frac{1}{20}$ M **C-11** solution.

Step 1: Rinse and fill the burette with water.

Step 2: Deliver 50 mL of water in a clean 250 cc beaker. Discard the remaining water in the burette.

Step 3: Rinse and fill the burette with the given **C-11** stock solution.

Step 4: To the beaker containing 50 mL water, add another 50 mL of **C-11** stock solution from the burette.

Step 5: Stir the solution with a glass rod to make it uniform throughout.

Step 6: Label it as $\frac{1}{20}$ M **C-11** solution.

iv. Carry out the volumetric titration using the given C-10 and $\frac{1}{20}$ M C-11 solutions.

Write the complete procedure of this titration stating the capacity of pipetted used.

--	--

v. Tabulate your readings (*Show your final titre value and titrant to the Visiting Examiner*).

--	--

vi. Calculate the molarity of C-10 solution. (Round off your answer to **TWO** decimal places)

--	--

vii. Determine the strength of **C-10** solution in gram per litre.

--	--

viii. Express the purity of **C-10** solution in percentage.

--	--

ix. Give **ONE** reason why purity of **C-10** is determined in the above titration.

x. Why dilute Sulphuric acid used in permanganometry titration is measured with a measuring cylinder instead of a pipette?

Question 2**[10]**

You are provided with a salt mixture **S-1** which contains two cations. (**S-1** is a 1:1 mixture of substances **C-5** and **C-7**). Qualitatively analyze the given salt mixture and identify the cations present. While testing for cations you must mention:

- a. how the original solution for group analysis was prepared?
- b. the formal group analysis with pertinent group reagents.
- c. one confirmatory test for each cation.

Show the confirmatory observation of each cation to the Visiting Examiner.

Analysis of a salt mixture, S-1

Report your analysis in the given table of observation.

Sl/No	Experiment	Observation	Inference

--	--	--	--	--

--	--	--	--	--

Based on the above salt mixture analysis, answer the following questions:

i. Explain why original solution is prepared for the detection of cations?

ii. Write a balanced chemical equation representing the confirmatory observation of a cation present in the mixture, **S-1**.

--	--

iii. Why is it necessary to boil off H_2S from the filtrate of group II before proceeding for the analysis of group III?

iv. Design a simple chemical test to confirm that H_2S is completely removed from the filtrate of group II?

v. Devise an alternative way to avoid boiling off H₂S gas in group III analysis?

Rough Work

